jxnl
/
spiral-mcp
star
13
No description available.

Spiral MCP Server

This is a Model Context Protocol (MCP) server implementation for the Spiral API using Python. It provides a standardized interface for interacting with Spiral's language models.

Installation

mcp install src/server.py --name "spiral-writing-tool" --with pydantic --with requests --with beautifulsoup4 --with httpx

Setup

  1. Create and activate a virtual environment:
python3 -m venv venv
source venv/bin/activate  # On Windows, use `venv\Scripts\activate`
  1. Install dependencies:
uv pip install -r requirements.txt
  1. Create a .env file in the root directory and add your Spiral API key:
SPIRAL_API_KEY=your_api_key_here

You can get your API key from https://app.spiral.computer/api

Running the Server

Start the server:

python src/server.py

The server will run on port 3000 by default. You can change this by setting the PORT environment variable.

Testing the Tools

To test the MCP tools directly:

python src/test_tools.py

This will run tests for all available tools to verify their functionality.

MCP Tools

The server implements four powerful MCP tools:

list_models

Lists all available Spiral models with their capabilities and metadata.

Example response:

{
    "models": [
        {
            "id": "model-id",
            "name": "model-name",
            "description": "Model description",
            "input_format": "text",
            "output_format": "text",
            "capabilities": {
                "completion": true
            }
        }
    ]
}

generate

Generates text using a specified Spiral model.

Parameters:

  • model: The ID or slug of the Spiral model to use
  • prompt: The input text to generate from

Example:

{
    "model": "model_id_or_slug",
    "prompt": "Your input text here"
}

generate_from_file

Generates text using a Spiral model with input from a file. This is useful for processing larger documents or maintaining consistent formatting.

Parameters:

  • model: The ID or slug of the Spiral model to use
  • file_path: Path to the file to use as input

Example:

{
    "model": "model_id_or_slug",
    "file_path": "path/to/your/input.txt"
}

generate_from_url

Generates text using a Spiral model with input from a URL. This tool can automatically extract article content from web pages.

Parameters:

  • model: The ID or slug of the Spiral model to use
  • url: URL to fetch content from
  • extract_article: Whether to extract article content or use full HTML (default: true)

Example:

{
    "model": "model_id_or_slug",
    "url": "https://example.com/article",
    "extract_article": true
}

Error Handling

The server handles various error cases including:

  • Invalid API key
  • Model not found
  • Input too long
  • Rate limit exceeded
  • URL fetch failures
  • File read errors
  • Server errors
  • Request timeouts

Each error returns a clear error message to help diagnose the issue.

Environment Variables

  • SPIRAL_API_KEY: Your Spiral API key (required)
  • PORT: Server port (optional, defaults to 3000)
  • TIMEOUT: Request timeout in seconds (optional, defaults to 30)

Features

  • Robust Error Handling: Comprehensive error handling and logging for all operations
  • Article Extraction: Smart extraction of article content from web pages
  • Flexible Input Sources: Support for text, files, and URLs as input
  • Async Operations: All operations are asynchronous for better performance
  • Type Safety: Full Pydantic type validation for all parameters
  • Logging: Detailed debug logging for troubleshooting
Stars
13
Mar 13Mar 18Mar 24Mar 30Apr 05Apr 11
mcpradar.com © 2024 - 2025.
Made by @bytesbay